Methods for mapping and quantification of intracellular 2nd messengers

Rui Malhó <u>r.malho@fc.ul.pt</u> <u>http://webpages.fc.ul.pt/~rmmalho</u>

Faculdade de Ciências da Universidade de Lisboa

Microscopy Techniques:

- Optical Microscopy
 - bright field
 - dark field
 - phase contrast
 - DIC
- Fluorescence Microscopy
 - Video/Digital
 - Confocal
 - Conventional
- Electron Microscopy
 - Transmission
 - Scanning
- Atomic Force Microscopy
- Micro-electrodes
 - Vibrating Probe
 - Patch-clamp

Essentials for Imaging

Optics

Quality of image & Signal captured

Image acquisition devices

- "Analogic": Eyesight, film and video signal vs:
- CCD & CMOS digital cameras (spatial detectors)
 - All pixels are acquired simultaneously
 - Used with conventional light microscopes (wide-field)
 - Low noise esp. if electronics cooled ("cooled CCDs")
 - To detect colors "pixel-size" filters are added
 - CCDs are more sensitive and noise-free (& expensive!)
 - CMOS are faster
 - emCCDs are more sensitive and have virtually "zero" noise
- PMT (photo multiplier tube)+A-D-Converter (point detection)
 - Point detector (registers fluctuations in light intensity...when synchronized with scanning generates 2D images...like a TV!)
 - Used in Laser Scanning Confocal Microscopes
 - Less efficient and more noisy! Requires powerfull light exposure

CCDs & CMOs cameras

High sensitive (scientific grade!) cameras don't see colors, i.e, they don't "see" energy, just convert photons into current which is accumulated in a ""bucket" (pixel!) and then passed on to readout.

Important parameters for image acquisition are exposure time and area of detection (binning)

Digital cool CCD Cameras 8-16 bit

Confocal system

laser, spinning disc, *multi-photon*

35 mm cameras Luminometers Photomultipliers

Electron Microscopy – High resolution, no dynamics

Wide-field system

- Fast (ms rate)
 Sensitive
 Ideal for SW dyes
 Coupled to deconvolution
 - •No Z-sectioning / time-course
 - •Co-localization with temporal delay (ok in fixed or immobilized material)
 - Imaging of ANY wavelenght
 - •Mostly manual
 - Cheap
 - •User-friendly

Inverted configuration:

- Caution with immersion obj
- Mouting in coverslides

Confocal system

ExpensiveUser-friendlyUpright configuration:

•Semi-automatic

Good for immersion obj
Problem with "deep" imaging

Sensitive
Ideal for two dyes - Co-localization with NO temporal delay (optimum for live material)
Not Coupled to deconvolution
Z-sectioning /time course
Imaging of SPECIFIC wavelenghts

Imaging techniques: Confocal and video fluorescence microscopy

- **1.** Cellular labelling with specific fluorescent probes / molecular constructs
- 2. Temporal and Spatial Mapping of ions and molecules
- 3. Three-dimensional reconstruction of cellular optical sections
- 4. Analysis of Digitized Images (quantification, volume determination, statistical analysis)
- 5. Microinjection of fluorescent probes, antibodies and nucleic acids
- 6. Non-invasive manipulation of intracellular concentration of signalling molecules (w/ caged-probes)

Phototoxicity

Phototoxicity is the absolute limiting factor in live cell imaging

- Excitation of fluorescent molecules in the presence of oxygen leads to fluorochrome bleaching and free radical generation.
- Free radicals kill cells.
- The interaction of light with cells > heat
- Heat kills cells.

Limiting Phototoxicity

- Maximize light collection.
 - Use HIGH NA
 - Immersion optics
 - This type of optic (for example 60Xplan-apo) has the best NA (1.4) and best light collection.
 - However, immersion optics generally lead to thermal problems a big issue.
 - Thus we make optical choices dependant on how long the experiment goes on for, how frequently we need to take images.

- Controls
 - Cell density
 - Incubation Volume
 - Moisture chamber
 - Fluorochrome concentration
 - Sample transport
- Cell Viability
- Bleaching
- Data acquisition
 - Settings (gain, exposure, brightness, contrast, etc)
 - Data storage (naming, backup, replicas)
 - Time (exposure, incubation, etc)

Imaging techniques: The GFP breakthrough

GFP can be inserted by genetic transformation

- Obtention of stable/transient mutants (cells, tissues, organisms)

- 1 gene transcription = 1 GFP molecule
 - Quantifications (theoretically) possible

- Construction of fusion proteins ("tag")

NVsmGFPKDCV (766 a.a)

Imaging techniques: The GFP applications

Co-localization

Ion dynamics

FRET / FRAP / FLIM / FLIM-FRET

Correlative analysis of apical secretion and [Ca²⁺]_c in pollen tube growth and reorientation

FM 1-43 under CLSM imaging

Ca2+ imaging

Our results are as good as the techniques used to obtain them

Ciências ULisboa da Universidade de Lisboa

